Consider a cube with periodic boundary conditions (the boundary conditions do not really matter)

$$
\psi=\frac{1}{L^{\frac{3}{2}}} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)}
$$

Boundary conditions:

$$
\left\{\begin{array}{l}
k_{x} L=2 \pi n_{x} \\
k_{y} L=2 \pi n_{y} \\
k_{z} L=2 \pi n_{z}
\end{array}\right.
$$

Note that n may be both negative and $n_{i} \in \mathbb{Z}$ positive
\rightarrow Momenta are quantised : $\Delta k_{i}=\frac{2 \pi}{L}$
 region of momentum space $d k$ \# momention states

$$
=V \frac{d k}{(2 \pi)^{3}}
$$

If we want to count all the states mise the Fermi surface

$$
\because C \frac{\ell k}{\text { ide the Fermi surface concentre. }}=N \rightarrow n=\int \frac{d k}{(2 \pi)^{3}}
$$

$$
V \int_{F S} \frac{d k}{(2 \pi)^{3}}=N \rightarrow n=\int \frac{d \pi}{(2 \pi)^{3}}
$$

The density of states
Usually defined as $\rho(E)=\frac{d N(E)}{d E}$! but! in condensed matter defined per unit volume:

$$
v(E)=\frac{d n(E)}{d E}
$$

The DOS for a system with a spherically symmetric dispersion

$$
n(E)=\int \frac{d k}{(2 \pi)^{3}} \theta\left(E-\varepsilon_{k}\right)-\text { concentration of }
$$ quasuparticles with energies $\varepsilon_{E} \in E$

$$
\begin{gathered}
\frac{4 \pi k^{2} d k}{(2 \pi)^{3}}=V \cdot d E \\
v=\frac{d E}{d k} \\
v=\frac{4 \pi k^{2}}{(2 \pi)^{3} v}=\frac{k^{2}}{2 \pi^{2} v}
\end{gathered}
$$

If there is spin, this needs to be multiplied by 2

$$
\rightarrow v=\frac{k^{2}}{\pi^{2} v}
$$

$$
\rightarrow \quad\left(v=\frac{k^{2}}{\pi^{2} v}\right)
$$

